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ABSTRACT

The bottom of the spin-wave spectrum is examined for the case of a
thin film magnetized in its plane. The bias field Hb and wave number kb
for the onset of first-order spin-wave instability at high microwave power is
calculated. In addition, the critical thickness dc' at which the uniform

mode saturation process changes from first to second order, is obtained.

These results are in fairly good agreement with experiment.
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I. INTRODUCTION

Suhll has shown that saturation of the uniform mode in ferromagnetic
resonance will occur, at a critical microwave field, via the nonlinear
coupling to the uniform mode of pairs of spin waves of energy # LO/Z, and
their ensuing unstable growth. (wo = 27 x drive frequency.) However, if
such spin waves do not exist, these 'first-order' processes cannot occur,
and the uniform mode does not saturate until some higher field at which
""'second-order' processes appear: growth of spin waves of energy fm;o. In
the latter case at some value of the bias field H, less than its resonance
value HO, spin waves of energy MUO/Z again become available and result in
a subsidiary absorption. Thus the spin-wave energy at the bottom of the
spectrum determines the nature of possible instabilities. As a measure of

this bottom, we may take the field H defined as the value of H for which

b’
the energy huﬂfé of the lowest-lying spin wave is equal to f:iuo/Z.
b
Calculation of Hb in a bulk ferromagnet is completely straightforward.

In a thin film magnetized in its plane, on the other hand, the spin-wave
spectrum is badly distorted at low wave numbers, essentially because of
the creation of non-cancelling surface poles. It is the purpose of this note
to calculate the resultant bottom field and wave number. As a by-product,
we obtain the critical thickness at which the transition from first-order to
second-order processes takes place. Finally, we compare our theory with

experimental results.

II. FIELD AND WAVE NUMBER AT THE BOTTOM OF THE SPECTRUM

The dispersion relation for a film of thickness d = 2L, with a field H
in the film plane, is given by
2 2 = 2l
w=> = [w, tw k L2 +uw Y(kL)][w, +w kZL2 +w X(kL)sin &] (1)
k h e m h e m



where

ol o
w. = HY (2a) () =n e " sinhx (2d)
A -
T ; (2b) X(x)=1 - x(x) (2e)
€ ML
(o]
w = 4mM Y (2c)
m (o]

and the wave vector K lies in the film plane at an angle ¢ to H. (A = exchange
constant, M0 = saturation magnetization, Y = ,gyromagnetic ratio, .) This

" which assumes

dispersion law is based on a '"'thin-film approximation,
excitations that are constant across the film thickness. Equation (1) reduces
to the bulk spectrum as kL = « (y — 0, i—' 1); in the thin-film limit kL - 0,

X = 1 and ﬁ)‘( - kL. The term me results from surface poles, which tend to
cancel as kL - «®, The term wmi sinzé results from volume poles, whose
density vanishes as kL -~ 0.

The field Hb and wave vector kb at the bottom of the spectrum are

given by Eq. (1) and

o
k =
vl 0 (3a)
¢ =0, (3b)
which become
wz =[w, +w KZ +w X(n)]lw, +w KZ] (4a)
b e m b e
2 ’ 2
2w ulw, +wu” +w X)) +[20on +@w X' (x)]{w, +wun"]=0 (4b)
e b e m e m b e



where

w = w- (5a)
kb

U\b = HbY (Sb)

w=lk Lo, (5¢)

(Note that w/w is the drive frequency. )

An exact analytical solution to Eqs. (4) for # and w, is impossible to

b
obtain. However, good approximations may be found in the thin-film (& << 1)
and thick-film (x >> 1) limits; a numerical solution may be used for inter-

mediate thicknesses.

A. Thin-Film Limit

With the definitions

Ll“I'Y’l
M= (6a)
W
e
B = wL (6b)
m
w
B S (6c)
W
m
-1
= %l (6d)
Eqs. (4) become
b2 +BY = B2 +un2(2b + X) +u2n4 =0 (7a)
bX' # znlzb + %) + un2(4n +RI=0 (7b)

where [from the # << 1 expansion of Eq. (2d)]



222
X=l—un+:j-un S (8a)
’ 4 22
x =-1+ E'“n ST o P (8b)

We solve Egs. (7) for b and 7 by a perturbation expansion in the parameter

U by assuming

b :Z bnu.n (93')
n=0

n=) mp (9b)
n=0

Then, with the help of Eqs. (6d) and (8), we equate to zero coefficients of

each power of yu in Egs. (7) to obtain

/ . 1
bo:-zl— l+482-l> no':‘l}—Kl _=2—
«/1 + 4B
2 N 2
b, =1, =3 W (1-18n0+24n0) (10)
b2=”r]0”r]l etc. ,

to any desired order.

In general, the condition for validity of this solution is

b << 1 (11a)

A

e
e
o

o << 1510

i
>

(11b)

2

2tM
o

“For Permalloy (A = 10-6 erg/cm; 4mM | = 104 oe).



However, if

462 << ]
i.e.,
w = 3
m 2z
— << =30 kM
™ 2T e

then from Eqgs. (6) and (10) we obtain

2
1 2
e e B B BB Pans &Gl BE® S n) S
b w 4
m
1 2 i
= —=0oll -3 G une S AT
K 2[ < 6 ]
where >
O = BZ = _
“HRT L e
e m

The conditions for validity are now (12b) and

o << 2

L << % afr = 500§

(12a)

(12b)

(13a)

(13b)

(14)

(15b)

(15b)

The line at the left in Fig. 1 shows Hb’ as given by Eq. (13a), as a function

of thickness for Permalloy with w/Y = 1530 oe.

kb =n/L are plotted in Fig. 2.

B. Thick-Film Limit

For this case, we let

1

o awts (5

(159"

Y
1

For Permalloy at w/m = 8.5 kMcps.

The corresponding values of

{16a)

(16b)
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so that Egs. (4) become
C*b° + b - 8°) + 6% (Zb + x) + 8 = 0 (17a)
bX'Q3 +8X'C + zazgz (Zb &+ %) + s = (17b)
where [from the u >> 1 expansion of Eq. (2d)]

8¢ (18a)

1
X' =~ =s=6L (18b)

Proceeding as before, we assume solutions of the form

8

b=) p™sn (19a)
n=0
E =) 5 (19b)
n=0
and find
b= g Skt
L .
4 E 38 (20)
(2) 1 (2) 1
STy ¢ =3
68
b(}):;2 etc.
488
or
R TR O U
wb—w(l—4p+8p +48p +...) (2la)
| I} I 2
K=E€(l-gp+l—zp +...) (21b)
where

(22)



The conditions for validity of this solution are

p << 1 (23a)
i.e.,
3
P52 G@Z 4m,/2M A = 800 g (23b)
w o
and
1
B
3 (24a)
i.e.,
L>>2/2 \_= 150 g (24b)

Note in the bulk limit L. -« that p = 0 so that wb - w and kb - 0. Hb, as

given by three terms of Eq. (21a), is shown by the line on the right in Fig. 1,

and kb as determined from two terms of Eq. (21b) is shown in Fig. 2.

C. Intermediate Case

To find numerical solutions, it is convenient to solve Eq. (4b) for

2
W, +w # and substitute this into Eq. (4a), to obtain
e

b
' 2 2
BZ(uX +4x) +2ux (WX +2x)=0 (25a)
24X
3 = 1 -+ & 25b
W w _T__—HX i u) ( )

Eq. (25a) may then be solved graphically for «. Hb, as determined from
Eq. (25b) is shown by the dashed line in Fig. 1. (Note that the interpolation
between the two approximate solutions is smooth.) In Fig. 2 the exact

numerical result for the wave number kb is shown by a dashed line.



III. CRITICAL THICKNESS

The transition from second order to first order instability occurs at
a critical thickness d = 2L such that wE at the bottom of the spin-wave
c C
spectrum is equal to half the uniform precession frequency, or

2 XY \2
@ _(J H (H_ +4mM ) . (26a)
H =H(d) . (26b)

The critical thickness is conveniently found from a plot of Hb vs. d (see
Fig. 1). However, an approximate analytic expression for dC may be ob-

tained from Eqgs. (26) and (21a). Using an iteration method, we find

3
& =38 “x (27a)
C C (0]
where
4 B(1-38) | 1 (1-3B)(2 + 138) 1 (1-38)(2 +138) 12

b == =t 4] 4= 1+ =

e S 4L »2g) L 9 v s 2812 [ 9 0 +26)2
4 (1-38)(1-78)
+8l————————+...} (27b)

(1 + ZB)3

provided B < 1/3. I B > 1/3, first-order processes cannot occur for any
thickness, including bulk samples. In Fig. 3 we plot 62/2 , as given by
three terms of Eq. (26b), vs. B, with scales at top and right for Permalloy.
An interesting feature is the existence of an absolute minimum critical
thickness given by

d) . =6l.6x =30804". (28)
C min (o]
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Fig. 3. Normalized inverse critical thickness versus normalized
drive frequency. The scales at right and top are computed for

A =10-6 erg/cm, 47rMg = 104 oe.
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IV. COMPARISON WITH EXPERIMENT

Comly and Penney3 have measured H, at 8.56 kMcps in Permalloy

b
films varying in thickness from 150 A to 7400 . Their results are shown
in Fig. 1, and are in fairly good accord with theory. The discrepancy

probably results from the approximations used to derive Eq. (1): the true
normal modes will vary somewhat across the film thickness, lowering the

spectrum and therefore raising H , particularly for the thicker samples.

b

Comly and Penney also found 2050 < d < 3250 A; the theoretical value of
c
3120 A is consistent with these limits. A more complete account of these

experimental results will be published in the near future.
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